

Survey on Algorithms for Personalized Patient
Health Informatics and Diagnosis

CS 6045

Advanced Algorithms

Spring 2025

Michael Rizig

Instructor – Dr. Michail Alexiou

P a g e | 2

I. ABSTRACT

The goal of this research is to provide an analysis on the current algorithms used for detection and diagnosis of
disease or illness. This research includes discussing the 4 primary approaches to the development of these type
algorithms: Supervised Learning, Unsupervised Learning, Statistical Modeling, and custom-made algorithms that
utilize some combination of both. The discussion will include each algorithms benefits, and how they fit into the larger
scheme of overall patient diagnosis. This research also covers the primary data sources for collecting anonymous
patient data for developing and training machine learning classification algorithms, the use and considerations of this
data, and results of each approach.

II. DATA COLLECTION

Collecting high quality data to train models on is the first step to any approach. There are several

sources that one can use to collect data ethically. Here are 3 common sources:

MEDICAL IMAGING ARCHIVES (PACS): These archives contain anonymous medical images such as x-
rays, scans, MRIS, and other digital medical images. This source would be useful for training a model in
machine vision to detect anomalies or cancers in a radiology environment.
EXAMPLES:
https://www.cancerimagingarchive.net/
https://grand-challenge.org/
https://www.cancerimagingarchive.net/browse-collections/

ELECTRONIC HEALTH RECORDS (EHRs): Electronic health records databases incluse both structured and
unstructured data and can vary by source. Some form of normalization is probably required.
EXAMPLES:
https://starr.stanford.edu/data-types/electronic-health-record
https://www.nature.com/articles/s41597-022-01899-x

LAB RESULTS DATABSES: This type of data consists of lab results from blood tests, stool tests, urine tests,
etc. From my experience these are the hardest to get reliable data from as labs are often private organizations.
https://pmc.ncbi.nlm.nih.gov/articles/PMC2929542/

SKLEARN: The algorithms in this paper will utilize SKLearn’s openly available datasets for training models.
This is simply the easiest and most compatible data for the small scale examples in this paper.
https://scikit-learn.org/stable/datasets.html#datasets

Feature reduction Algorithm:

 This algorithm utilizes a divide and conquer approach to reduce the number of features while maintain
accuracy. This allows for the model to run more efferently as it no longer has to process a high dimensionality of
data. The time complexity of the feature reduction can be considered m (log reg model epochs) * n (size of data) *
log(n) (reduction) or O(m*n*log(n))

NOTE: While this was implemented for demonstration purposes, all results show model outputs when
trained on the full feature set to ensure consistency and accuracy in the results and comparisons. This section
is just to provide an alternative more streamlined dataset with reduced features.

https://www.cancerimagingarchive.net/
https://grand-challenge.org/
https://www.cancerimagingarchive.net/browse-collections/
https://starr.stanford.edu/data-types/electronic-health-record
https://www.nature.com/articles/s41597-022-01899-x
https://pmc.ncbi.nlm.nih.gov/articles/PMC2929542/
https://scikit-learn.org/stable/datasets.html#datasets

P a g e | 3

def divide_and_conquer_feature_selection(X_train, y_train, X_test, y_test, features,
target_num_features):
 if len(features) <= target_num_features:
 return features

 # Divide the features into two
 mid = len(features) // 2
 left = features[:mid]
 right = features[mid:]

 # Evaluate
 aleft = helper(X_train, y_train, X_test, y_test, left)
 aright = helper(X_train, y_train, X_test, y_test, right)

 # Keep the better half
 selected = left if aleft > aright else right

 # Recurse
 return divide_and_conquer_feature_selection(X_train, y_train, X_test, y_test,
selected, target_num_features)

def helper(X_train, y_train, X_test, y_test, feature_subset):
 model = LogisticRegression(max_iter=10000, solver='liblinear')
 model.fit(X_train[feature_subset], y_train)
 y_pred = model.predict(X_test[feature_subset])
 return accuracy_score(y_test, y_pred)

END OF ALGORITHM

III. APPROACH

There are 4 general approaches that will be covered in this paper. These include Supervised Learning,

Unsupervised Learning, Deep Learning, Statistical Modeling, and Custom Algorithms.

1. SUPERVISED LEARNING:
Supervised learning algorithms utilize datasets with the correct output each data point labeled. By

utilizing labeled data, the model can be trained Via backpropagation and can be used on new unseen
patient data. Some applications of this type of model include image analysis, radiology, analyzing lab
results, and suggesting treatments to certain ailments. Some examples of supervised learning include
logistical regression state vector machines and neural networks. By setting the output classes of a neural
network to all the possible diseases being tested for, a sufficiently deep neural network utilizing logistical
regression may be able to predict diagnosis once trained.

2. UNSUPERVISED LEARNING:
Unsupervised learning is similar to supervised learning with the difference being that data points are

not labeled. In this way the model must group data and generate classes based on similarity this type of
model can be used to detect anomalies and also classify results with predefined groups. An example of
this type of algorithm is a K-Means algorithm. With sufficient generated groups, the model could predict
the output of a given datapoint by finding its closest group. It could also detect new groups based on
previously unseen trends period

P a g e | 4

3. STATISTICAL MODELING:
Statistical modeling is a more classical approach to medical diagnosis. These types of models take

into account the patients age, symptoms, and medical history to make predictions of what the diagnosis
may be via probability. By asking the patient a series of questions, and having storing the conditional
probability of each, the model can predict with some accuracy the general diagnosis of a patients illness.

4. CUSTOM ALGORITHMS:
In most cases, when trying to create a system that can reliably predict the diagnosis, a combination of

the previous 3 approaches is used. By integrating the three approaches, we can reliably predict the
diagnosis of a patient to aid in medical treatment. The tradeoff of this approach is it is the most
computationally / time demanding as it would require the use of 3 or more models. These algorithms will
not be covered in this paper as they encompass a wide range of solutions.

IV. SUPERVISED LEARNING ALGORITHM

This section contains an example of a basic supervised learning algorithm that could be used to predict
if a sample is malignant. The dataset used contains 569 samples classed as either Malignant or Benign,
with 212 samples the former and 357 the latter. This algorithm trains a neural network classifier on the
data logs the accuracy of the algorithm.

Complexity:
 Determining the complexity of a supervised learning algorithm is not very straight forward depending
on the type of algorithm. For this implementation, we can consider training and testing as 2 separate
events and thus their complexities are distinct.

Training: Training the algorithm consists of passing the dataset through the network and back-progating
to update weights. (2n). We do this on all features (k) and repeat this as many times as we need to reach
our target epochs (m). Thus, the time complexity of training this supervised algorithm is O(m(n*k))
where n = len(dataset), k = len(features), and m = len(epochs).

Prediction: Predicting if a sample is malignant or not does not require any use of the dataset n. The
algorithm utilizes the learned weights to pass the data once through the network and arrive at a result.

Thus the time complexity of prediction is linear, at O(1).
Dataset:
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
Guides used:
https://www.youtube.com/watch?v=z1oDlzngvI0
https://www.youtube.com/watch?v=EAGeDyygilM

class BinaryClassifier(nn.Module):
 def __init__(self, input_size):
 super(BinaryClassifier, self).__init__()
 self.fc1 = nn.Linear(input_size, 64) # layer 1
 self.relu1 = nn.ReLU()
 self.fc2 = nn.Linear(64, 32) # layer 2
 self.relu2 = nn.ReLU()
 self.fc3 = nn.Linear(32, 1) # layer 3 (output layer)

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
https://www.youtube.com/watch?v=z1oDlzngvI0
https://www.youtube.com/watch?v=EAGeDyygilM

P a g e | 5

 self.sigmoid = nn.Sigmoid() # map to value between 0 and 1

 def forward(self, x):
 # forward propigate through network
 out = self.fc1(x)
 out = self.relu1(out)
 out = self.fc2(out)
 out = self.relu2(out)
 out = self.fc3(out)
 out = self.sigmoid(out)
 return out

class Supervised:
 def __init__(self):
 self.classifier = BinaryClassifier(30)
 self.load_data()
 self.train_model()
 def load_data(self):
 # Load the dataset
 cancer = load_breast_cancer()
 X = pd.DataFrame(cancer.data, columns=cancer.feature_names)
 y = cancer.target
 # grab features

 self.features = list(X.columns)
 # Split the data into train, test, adn validation sets
 # lines 19 and 20 borrowed from sklearn website
 xtrain, xtest, ytrain, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
 xtrain, xvalidation, ytrain, yvalidation = train_test_split(xtrain, ytrain,
test_size=0.25, random_state=42) # 0.25 of 0.8 is 0.2
 # normalize the data
 # https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler
 self.scaler = StandardScaler()
 xtrain = self.scaler.fit_transform(xtrain)
 xvalidation = self.scaler.transform(xvalidation)
 xtest = self.scaler.transform(xtest)
 # Convert data to tensors
 self.xtrain = torch.tensor(xtrain, dtype=torch.float32)
 self.xvalidation = torch.tensor(xvalidation, dtype=torch.float32)
 self.xtest = torch.tensor(xtest, dtype=torch.float32)
 self.ytrain = torch.tensor(ytrain, dtype=torch.long)
 self.yvalidation = torch.tensor(yvalidation, dtype=torch.long)
 self.y_test = torch.tensor(y_test, dtype=torch.long)

 return self.xtrain, self.xvalidation, self.xtest, self.ytrain,
self.yvalidation, y_test, self.scaler, self.features

P a g e | 6

 # divde and conquer reduce:

 def divide_and_conquer_feature_selection(self,xtrain, ytrain, xtest, ytest,
features, num_features):
 if len(features) <= num_features:
 return features

 # Divide the features into two
 mid = len(features) // 2
 left = features[:mid]
 right = features[mid:]

 # Evaluate
 aleft = self.helper(xtrain, ytrain, xtest, ytest, left)
 aright = self.helper(xtrain, ytrain, xtest, ytest, right)

 # Keep the better half
 selected = left if aleft > aright else right

 # Recurse
 return self.divide_and_conquer_feature_selection(xtrain, ytrain, xtest, ytest,
selected, num_features)

 def helper(self,xtrain, ytrain, xtest, ytest, feature_subset):
 model = LogisticRegression(max_iter=10000, solver='liblinear')
 model.fit(xtrain[feature_subset], ytrain)
 y_pred = model.predict(xtest[feature_subset])
 return accuracy_score(ytest, y_pred)

 def train_model(self, epochs=100, learning_rate=0.001):

 lossc = nn.BCELoss()
 optimizer = optim.Adam(self.classifier.parameters(), lr=learning_rate)

 # Train the model
 val_accuracies = []
 for epoch in range(epochs):
 # Forward propagation
 pred = self.classifier(self.xtrain)
 loss = lossc(pred, self.ytrain.float().view(-1, 1))
 # Backward propagation and optimization
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

P a g e | 7

 # Evaluate on validation set
 with torch.no_grad():
 y_pred_val = self.classifier(self.xvalidation)
 y_pred_val_binary = (y_pred_val > 0.5).long() # Threshold at 0.5
 val_accuracy = accuracy_score(self.yvalidation.numpy(),
y_pred_val_binary.numpy())
 val_accuracies.append(val_accuracy)

 return val_accuracies

 def predict(self, data):
 pred = self.classifier(data)
 pred = (pred>0.5).int().tolist()
 return sum(pred,[])

 def evaluate_model(self):
 # Evaluate the model on the test set
 with torch.no_grad():
 y_pred_test = self.classifier(self.xtest)
 y_pred_test_binary = (y_pred_test > 0.5).long() # Threshold at 0.5
 #test_accuracy = accuracy_score(self.y_test, y_pred_test_binary.numpy())
 # variables for confusion matrix
 tp =0
 fp= 0
 fn=0
 tn=0
 for i in range(len(y_pred_test_binary)):
 if y_pred_test_binary[i] == 1:
 if self.y_test[i] == 1:
 tp+=1
 else:
 fp+=1
 else:
 if self.y_test[i] == 1:
 fn+=1
 else:
 tn+=1
 #print("fn", fn ," fp ", fp , " tn " , tn , " tp ", tp)
 return classification_report(self.y_test, y_pred_test_binary.numpy())

if __name__ == "__main__":
 supervised = Supervised()
 supervised.predict(supervised.xtest)
 # Evaluate the model
 print(supervised.evaluate_model())

END OF ALGORITHM

P a g e | 8

RESULTS:

Metric Benign Malignant Accuracy Macro F1 Weighted F1

Precision 0.9855 0.9333

0.9649 0.9630 0.9651 Recall 0.9577 0.9767

F1-Score 0.9714 0.9545

Count 43 71

Figure 1. Supervised Learning Results

CONFUSION MATRIX:
Note: All confusion matrices in this report were generated via

https://www.damianoperri.it/public/confusionMatrix/

Figure 2. Supervised Learning Confusion Matrix

https://www.damianoperri.it/public/confusionMatrix/

P a g e | 9

V. UNSUPERVISED LEARNING ALGORITHM

This section contains an example of a basic unsupervised learning algorithm that could be used to

predict if a sample is malignant. This algorithm utilizes the same exact dataset as before, but the
algorithm does not utilize the labels for training. This algorithm (K-MEANS) creates cluster centers,
assigns data based on how close the datapoint is to a given cluster, then re-averages the cluster centers
and re-assigns the data again. This way the clusters become more and more fitting of the data it
represents. The clusters are then matched with their actual values.
Complexity:

As with Supervised, Unsupervised learning is also broken down into training and testing
complexities.

Training: For training, we are passing each datapoint (n) into our graph checking each cluster (2)

based on the number of features (m), and we are doing this as many times as we need until our clusters
stop changing (for sklearn this runs 10 times, but for demonstration purposeless we will call this k). Thus
our training complexity is n * 2 * m * k, or simply O(n*m*k)

 Prediction: Predicting our datapoint in this unsupervised algorithm is not linear as it was in our
supervised algorithm. It checks each cluster (2) by the number of features in the sample (n), this for our
prediction approach our complexity is 2n or O(n), but in cases where the number of clusters is not
simple, we can cay O(n*m)

Dataset:
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html

class Unsupervised:
 def __init__(self):
 self.load_data()
 self.train_kmeans_model()
 self.assigned_clusters = self.assign_clusters_to_labels()
 # load the data the same way as the supervised data but without labels
 def load_data(self):
 # Load the dataset
 cancer = load_breast_cancer()
 X = cancer.data
 y = cancer.target #useful for comparing the clusters to the actual labels

 # note that this alg only loads the X values, not the Y values (no labels)
 self.xtrain, self.xtest, self.ytrain, self.ytest = train_test_split(X, y,
test_size=0.2, random_state=42)

 scaler = StandardScaler()
 self.xtrain = scaler.fit_transform(self.xtrain)
 self.xtest = scaler.transform(self.xtest)

 return self.xtrain, self.xtest, self.ytrain, self.ytest, scaler

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html

P a g e | 10

 # train a k-means model (creates clusters and matches each datapoint to the
cluster it is closest to)
 def train_kmeans_model(self, n_clusters=2):

 self.kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init='auto')
 # Train the model
 self.kmeans.fit(self.xtrain)
 return self.kmeans

 def evaluate(self):
 # Predict the clusters for the test data
 cluster_labels =self.kmeans.predict(self.xtest)
 if self.assigned_clusters[0] == 1: # if the labels are flipped, flip the
labels of each
 for i in range(len(cluster_labels)):
 if cluster_labels[i] == 1:
 cluster_labels[i] = 0
 else :
 cluster_labels[i] = 1
 # generate variables for confusion matrix (same as before)
 tp =0
 fp= 0
 fn=0
 tn=0
 for i in range(len(cluster_labels)):
 if cluster_labels[i] == 1:
 if self.ytest[i] == 1:
 tp+=1
 else:
 fp+=1
 else:
 if self.ytest[i] == 1:
 fn+=1
 else:
 tn+=1
 #print("fn", fn ," fp ", fp , " tn " , tn , " tp ", tp)
 #print(cluster_labels, self.ytest, assigned_clusers)
 return classification_report(self.ytest,cluster_labels)

 # goes through each cluster and finds the majority value (0 or 1) then assigns
that cluster that valeu
 def assign_clusters_to_labels(self):

 clusters = self.kmeans.predict(self.xtrain)
 cluster_labels = {}
 for cluster_id in range(self.kmeans.n_clusters):
 cluster_indices = np.where(clusters == cluster_id)[0]
 cluster_true_labels = self.ytrain[cluster_indices]

P a g e | 11

 # Find the most frequent label in this cluster
 if cluster_true_labels.size > 0:
 most_common_label = np.bincount(cluster_true_labels).argmax()
 else:
 most_common_label = 0
 cluster_labels[cluster_id] = most_common_label
 return cluster_labels

 def predict(self, data):
 pred = self.kmeans.predict(data)
 if self.assigned_clusters[0] == 1: # if the labels are flipped, flip the
labels of each
 for i in range(len(pred)):
 if pred[i] == 1:
 pred[i] = 0
 else :
 pred[i] = 1
 return pred

if __name__ == "__main__":
 unsupervised = Unsupervised()
 # Evaluate the model
 print(unsupervised.evaluate())
 # Assign labels to clusters

 #print(f"Cluster to label mapping: {unsupervised.assign_clusters_to_labels()}")

END OF ALGORITHM

P a g e | 12

RESULTS:

Metric Benign Malignant Accuracy Macro F1 Weighted F1

Precision 0.9091 0.9730

0.9298

0.9230 0.9286 Recall 0.9859 0.8372

F1-Score 0.9459 0.9000

Count 43 71

 Figure 3. Unsupervised Learning Results

CONFUSION MATRIX:

Figure 4. Unsupervised Learning Confusion Matrix

P a g e | 13

VI. STATISTICAL MODELING

Statistical Modeling is another method of utilizing models to predict a diagnosis. Bayes

Classifiers work by utilizing prior probabilities to calculate the probability that a data sample belongs
in any given class. It does this by multiplying the probability that the data point is in the group (by
using the groups frequency over N) then multiplies this by the likelihood of each feature of the
example appearing in that group. When done for every group, we get a set of probabilities, and we
choose the highest value as our prediction.

Complexity:

As before, we will split the complexity into training complexity and predicting complexity.

Training: For training, we utilize the number of datapoints (n) and for each we utilize each feature

(m) and compute the statistics based on these. This we can claim that for our binary approach, the
complexity to train the model would be O(n*m). This is significantly faster training than our other two
models.

 Prediction: Predicting our datapoint in this unsupervised algorithm is not linear as it was in our
supervised algorithm. It checks each cluster (2) by the number of features in the sample (n), this for our
prediction approach our complexity is 2n or O(n), but in cases where the number of clusters is not
simple, we can cay O(n*m)

class BayesClassifier:
 def __init__(self):
 self.bayes = GaussianNB()
 self.load_data()
 self.train()

 def load_data(self):
 # Load the dataset
 cancer = load_breast_cancer()
 X = pd.DataFrame(cancer.data, columns=cancer.feature_names)
 y = cancer.target
 # grab features

 features = list(X.columns)
 # Split the data into train, test, adn validation sets
 # lines 19 and 20 borrowed from sklearn website
 xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2,
random_state=42)
 xtrain, xvalidation, ytrain, yvalidation = train_test_split(xtrain, ytrain,
test_size=0.25, random_state=42) # 0.25 of 0.8 is 0.2
 # normalize the data
 scaler = StandardScaler()
 xtrain = scaler.fit_transform(xtrain)
 xvalidation = scaler.transform(xvalidation)
 xtest = scaler.transform(xtest)
 # Convert data to tensors

P a g e | 14

 self.xtrain = torch.tensor(xtrain, dtype=torch.float32)
 self.xvalidation = torch.tensor(xvalidation, dtype=torch.float32)
 self.xtest = torch.tensor(xtest, dtype=torch.float32)
 self.ytrain = torch.tensor(ytrain, dtype=torch.long)
 self.yvalidation = torch.tensor(yvalidation, dtype=torch.long)
 self.ytest = torch.tensor(ytest, dtype=torch.long)
 self.scaler = scaler
 self.features = features
 return self.xtrain, self.xvalidation, self.xtest, self.ytrain,
self.yvalidation, self.ytest, self.scaler, self.features

 def train(self):
 # https://scikit-learn.org/stable/modules/naive_bayes.html
 self.load_data()
 self.bayes.fit(self.xtrain,self.ytrain)

 def predict(self,data):
 pred = self.bayes.predict(data)
 return pred

 def evaluate_model(self):
 pred = self.predict(self.xtest)
 output= classification_report(self.ytest.numpy(),pred)
 # variables for confusion matrix
 tp =0
 fp= 0
 fn=0
 tn=0
 for i in range(len(pred)):
 if pred[i] == 1:
 if self.ytest[i] == 1:
 tp+=1
 else:
 fp+=1
 else:
 if self.ytest[i] == 1:
 fn+=1
 else:
 tn+=1
 #print("fn", fn ," fp ", fp , " tn " , tn , " tp ", tp)
 return output
if __name__ == "__main__":
 bayes = BayesClassifier()
 bayes.train()
 bayes.predict(bayes.xtest)
 print(bayes.evaluate_model())

END OF ALGORITHM

P a g e | 15

RESULTS:

We can clearly see that of the three models, Statistical performed similar in some aspects and actually performed
better in others on this dataset. This is impressive considering the training time for bayes is significantly smaller than
that of our other algorithms.

Metric Benign Malignant Accuracy Macro F1 Weighted F1

Precision 0.9583 0.9756

0.9646 0.9621 0.9644 Recall 0.9857 0.9302

F1-Score 0. 0.9718 0.9524

Count 43 71

 Figure 5. Bayes Classifier Results

CONFUSION MATRIX:

Figure 6. Bayes Classifier Confusion Matrix

P a g e | 16

VII. CUSTOM ALGORITHMS

Custom algorithms can be utilized to cross reference the results of each model. For example, a custom algorithm
could run several models and use a voting system to ensure the highest likelihood of having an accurate result. In
this approach, we could utilize the previously trained Supervised and Unsupervised algorithms and put all three
predictions as votes. If there is a disagreement (2 positives and 1 negative, 2 negatives and 1 positive, etc), the
higher frequency result would be the overall output.

from BayesClassifier import BayesClassifier
from SupervisedDiagnosis import Supervised
from UnSupervisedDiagnosis import Unsupervised
from sklearn.metrics import accuracy_score, classification_report
import numpy as np

if __name__ == "__main__":
 # init all 3 models
 bayes = BayesClassifier()
 supervised = Supervised()
 unsupervised = Unsupervised()
 print("--------------BAYES--------------")
 print(bayes.evaluate_model())
 print("--------------SUPERVISED--------------")
 print(supervised.evaluate_model())
 print("--------------UNSUPERVISED--------------")
 print(unsupervised.evaluate())
 bayes_output = bayes.predict(bayes.xtest)
 supervised_output = supervised.predict(bayes.xtest)
 unsupervised_output = unsupervised.predict(bayes.xtest)
 voted_output = []
 # variables for confusion matrix
 tp =0
 fp= 0
 fn=0
 tn=0
 for i in range(len(bayes_output)):
 true_count = 0
 if bayes_output[i] == 1:
 true_count += 1
 if supervised_output[i] == 1:
 true_count += 1
 if unsupervised_output[i] == 1:
 true_count += 1

 if true_count >= 2:
 voted_output.append(1)
 else:
 voted_output.append(0)

P a g e | 17

 if voted_output[i] == 1:
 if bayes.ytest[i] == 1:
 tp+=1
 else:
 fp+=1
 else:
 if bayes.ytest[i] == 1:
 fn+=1
 else:
 tn+=1

 print("fn", fn ," fp ", fp , " tn " , tn , " tp ", tp)
 print(classification_report(bayes.ytest.tolist(),voted_output))

END OF ALGORITHM

P a g e | 18

RESULTS:
We can clearly see from our results that our custom algorithm which utilizes a voting system has the

highest average accuracy, Macro F1 and Weighted F1 scores. It is important to note that this result only
slightly beats our Bayes Classifier, despite being the highest cost algorithm to run.

Metric Benign Malignant Accuracy Macro F1 Weighted F1

Precision 0.9589 0.9756

0.9649 0.9623 0.9647 Recall 0.9859 0.9302

F1-Score 0.9722 0.9524

Count 43 71

 Figure 5. Custom Algorithm Results

CONFUSION MATRIX:

Figure 5. Custom Algorithm Confusion Matrix

P a g e | 19

VIII. CONCLUSION

When surveying the algorithms for patient diagnosis, we can conclude that Supervised Learning, Unsupervised

Learning, and Statistical Modeling algorithms can accurately and consistently detect and diagnose diseases in
patients. The implications of these algorithms can be seen in online AI based wellness applications, as well as in the
medical field. This technology has already begun testing in radiology and cancer detection applications in the
modern medical field. While some algorithms are more accurate than others, there is an increased benefit when
using multiple algorithms in collaboration to increase overall accuracy. This technology will likely change the
medical landscape and allow for faster, cheaper, and more accurate diagnosis, ultimately making healthcare more
accessible and affordable.

While we saw that our combination algorithm performed the best in terms of average accuracy, we must take
into consideration the cost to accuracy ratio to determine a winner. As expected, picking the ‘best’ algorithm
requires factoring in a project’s specific priorities. Based on this, below are the winners based on the three different
criteria.

Training Cost:

The algorithm that wins in terms of training cost is the Bayes Classifier, due to it having the lowest training
cost of the 3 models. This is because Bayes Classifier does not need to back-propagate like Supervised does, and
does not need to repeatedly recalculate clusters like Unsupervised does. Thus, when picking a result that would be
the most cost effective in training, Bayes Classifier wins.

Prediction Cost:
 In situations where prediction cost is most important, then the Supervised Learning algorithm wins. This is
because it not only performed well in accuracy, but has the lowest overall prediction cost (by far) with a linear
prediction cost O(1). This means that in applications where training is one and done, or a pretrained model is used,
Supervised Learning is the best option.

Accuracy:
 When accuracy is the foremost concern, and cost is must less important, the Custom Algorithm wins as it gives
the highest accuracy with this dataset. Which all the models were fairly accurate, the Custom Algorithm can truly
shine when the dataset results in less accurate models overall. This would increase the need for a “highest voted
solution”.

While there is no such thing as a one size fits all approach, adequate research and testing should lead the project
to the best approach for its goal and dataset.

P a g e | 20

IX. REFRENCES

SUPERVISED LEARNING

1. Buch, V. H., Ahmed, I., & Maruthappu, M. (2018). Artificial intelligence in medicine: current trends and
future possibilities. The British journal of general practice : the journal of the Royal College of General
Practitioners, 68(668), 143–144. https://doi.org/10.3399/bjgp18X695213

2. Lei Wang, Qing Qian, Qiang Zhang, Jishuai Wang, Wenbo Cheng, Wei Yan, Classification Model on Big Data in
Medical Diagnosis Based on Semi-Supervised Learning, The Computer Journal, Volume 65, Issue 2, February
2022, Pages 177–191, https://doi.org/10.1093/comjnl/bxaa006

3 .A. Chebli, A. Djebbar and H. F. Marouani, "Semi-Supervised Learning for Medical Application: A Survey," 2018
International Conference on Applied Smart Systems (ICASS), Medea, Algeria, 2018, pp. 1-9, doi:
10.1109/ICASS.2018.8651980. https://www.sciencedirect.com/science/article/abs/pii/S0933365715000482

4 . Ramakanth Kavuluru, Anthony Rios, Yuan Lu,
An empirical evaluation of supervised learning approaches in assigning diagnosis codes to electronic medical
records, https://www.sciencedirect.com/science/article/abs/pii/S0933365715000482

5. Roy, S., Meena, T., & Lim, S.-J. (2022). Demystifying Supervised Learning in Healthcare 4.0: A New Reality of
Transforming Diagnostic Medicine. Diagnostics, 12(10), 2549. https://doi.org/10.3390/diagnostics12102549

6. Samriti Sharma, Gurvinder Singh, Manik Sharma, A comprehensive review and analysis of supervised-learning
and soft computing techniques for stress diagnosis in humans.
https://www.sciencedirect.com/science/article/abs/pii/S0010482521002444

7. Eckardt Jan-Niklas , Bornhäuser Martin , Wendt Karsten , Middeke Jan Moritz, Semi-supervised learning in
cancer diagnostics, Volume 12 – 2022,
https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.960984 DOI=10.3389/fonc.2022.960984

8. Aljuaid, A., Anwar, M. Survey of Supervised Learning for Medical Image Processing. SN COMPUT. SCI. 3, 292
(2022).

9. S. Muthurajkumar, R. Praveen, A.A. Abd El-Aziz, R. Shangeeth, S. Anika Lakshmi, and R. Gaythrisr, Medical
diagnosis of human heart diseases using supervised learning techniques, https://digital-
library.theiet.org/doi/abs/10.1049/PBHE058E_ch4

10. M. Zhao, R. H. M. Chan, T. W. S. Chow and P. Tang, "Compact Graph based Semi-Supervised Learning for
Medical Diagnosis in Alzheimer’s Disease," in IEEE Signal Processing Letters, vol. 21, no. 10, pp. 1192-1196, Oct.
2014

11. Oumaima Terrada1 , Soufiane Hamida1 , Bouchaib Cherradi1, 2, Abdelhadi Raihani1,* , Omar Bouattane1,
Supervised Machine Learning Based Medical Diagnosis Support System for Prediction of Patients with Heart
Disease, https://www.researchgate.net/profile/Omar-
Bouattane/publication/345325800_Supervised_Machine_Learning_Based_Medical_Diagnosis_Support_System_for
_Prediction_of_Patients_with_Heart_Disease/links/5fb660c9458515b797511e8d/Supervised-Machine-Learning-
Based-Medical-Diagnosis-Support-System-for-Prediction-of-Patients-with-Heart-Disease.pdf

12. Nosayba Al-Azzam, Ibrahem Shatnawi, Comparing supervised and semi-supervised Machine Learning Models
on Diagnosing Breast Cancer, Annals of Medicine and Surgery, https://academic.oup.com/comjnl/article-
abstract/65/2/177/5808795

https://doi.org/10.1093/comjnl/bxaa006
https://www.sciencedirect.com/science/article/abs/pii/S0933365715000482
https://www.sciencedirect.com/science/article/abs/pii/S0933365715000482
https://doi.org/10.3390/diagnostics12102549
https://www.sciencedirect.com/science/article/abs/pii/S0010482521002444
https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.960984
https://digital-library.theiet.org/doi/abs/10.1049/PBHE058E_ch4
https://digital-library.theiet.org/doi/abs/10.1049/PBHE058E_ch4
https://www.researchgate.net/profile/Omar-Bouattane/publication/345325800_Supervised_Machine_Learning_Based_Medical_Diagnosis_Support_System_for_Prediction_of_Patients_with_Heart_Disease/links/5fb660c9458515b797511e8d/Supervised-Machine-Learning-Based-Medical-Diagnosis-Support-System-for-Prediction-of-Patients-with-Heart-Disease.pdf
https://www.researchgate.net/profile/Omar-Bouattane/publication/345325800_Supervised_Machine_Learning_Based_Medical_Diagnosis_Support_System_for_Prediction_of_Patients_with_Heart_Disease/links/5fb660c9458515b797511e8d/Supervised-Machine-Learning-Based-Medical-Diagnosis-Support-System-for-Prediction-of-Patients-with-Heart-Disease.pdf
https://www.researchgate.net/profile/Omar-Bouattane/publication/345325800_Supervised_Machine_Learning_Based_Medical_Diagnosis_Support_System_for_Prediction_of_Patients_with_Heart_Disease/links/5fb660c9458515b797511e8d/Supervised-Machine-Learning-Based-Medical-Diagnosis-Support-System-for-Prediction-of-Patients-with-Heart-Disease.pdf
https://www.researchgate.net/profile/Omar-Bouattane/publication/345325800_Supervised_Machine_Learning_Based_Medical_Diagnosis_Support_System_for_Prediction_of_Patients_with_Heart_Disease/links/5fb660c9458515b797511e8d/Supervised-Machine-Learning-Based-Medical-Diagnosis-Support-System-for-Prediction-of-Patients-with-Heart-Disease.pdf
https://academic.oup.com/comjnl/article-abstract/65/2/177/5808795
https://academic.oup.com/comjnl/article-abstract/65/2/177/5808795

P a g e | 21

13. M. Pechenizkiy, A. Tsymbal, S. Puuronen and O. Pechenizkiy, "Class Noise and Supervised Learning in
Medical Domains: The Effect of Feature Extraction," 19th IEEE Symposium on Computer-Based Medical Systems
(CBMS'06), Salt Lake City, UT, USA, 2006, pp. 708-713, doi: 10.1109/CBMS.2006.65.
https://ieeexplore.ieee.org/abstract/document/1647654

14. De Asmundis, R., Guarracino, M.R. (2013). Mathematical Models of Supervised Learning and Application to
Medical Diagnosis. In: Pardalos, P., Coleman, T., Xanthopoulos, P. (eds) Optimization and Data Analysis in
Biomedical Informatics. Fields Institute Communications, vol 63. Springer, New York, NY.
https://doi.org/10.1007/978-1-4614-4133-5_3

15. Haseeb Hassan, Zhaoyu Ren, Chengmin Zhou, Muazzam A. Khan, Yi Pan, Jian Zhao, Bingding Huang,
Supervised and weakly supervised deep learning models for COVID-19 CT diagnosis: A systematic review,
https://www.sciencedirect.com/science/article/pii/S0169260722001171

UNSUPERVISED LEARNING:

16. Khalid Raza and Nripendra K. Singh, A Tour of Unsupervised Deep Learning for Medical Image Analysis,
https://www.benthamdirect.com/content/journals/cmir/10.2174/1573405617666210127154257

17. Xiuli Bi, Shutong Li, Bin Xiao, Yu Li, Guoyin Wang, Xu Ma,
Computer aided Alzheimer's disease diagnosis by an unsupervised deep learning technology.
https://www.sciencedirect.com/science/article/abs/pii/S0925231219304709

18. H. P. Ng, S. H. Ong, K. W. C. Foong, P. S. Goh and W. L. Nowinski, "Medical Image Segmentation Using K-
Means Clustering and Improved Watershed Algorithm," 2006 IEEE Southwest Symposium on Image Analysis and
Interpretation, Denver, CO, USA, 2006, pp. 61-65, doi: 10.1109/SSIAI.2006.1633722.
https://ieeexplore.ieee.org/abstract/document/1633722

STATISTICAL MODELS:

19. Langarizadeh, M., & Moghbeli, F. (2016). Applying Naive Bayesian Networks to Disease Prediction: a
Systematic Review. Acta informatica medica : AIM : journal of the Society for Medical Informatics of Bosnia &
Herzegovina : casopis Drustva za medicinsku informatiku BiH, 24(5), 364–369.
https://doi.org/10.5455/aim.2016.24.364-369

20. Regnier-Coudert O, McCall J, Lothian R, Lam T, McClinton S, N'dow J. Machine learning for improved
pathological staging of prostate cancer: a performance comparison on a range of classifiers. Artif Intell Med. 2012
May;55(1):25–35. doi: 10.1016 https://www.sciencedirect.com/science/article/abs/pii/S0933365711001461

21 .Kazmierska J, Malicki J. Application of the Naïve Bayesian Classifier to optimize treatment decisions. Radiother
Oncol. 2008 Feb;86(2):211–6. doi: 10.1016/j.radonc.2007.10.019
https://www.sciencedirect.com/science/article/abs/pii/S0167814007005221

22. M. Wiggins , A. Saad , B. Litt , G. Vachtsevanos, Evolving a Bayesian classifier for ECG-based age
classification in medical applications, https://www.sciencedirect.com/science/article/abs/pii/S1568494607000452

23. Beí¡ta Reiz, Lehel Csató, Bayesian Network Classifier for Medical Data Analysis,
https://www.univagora.ro/jour/index.php/ijccc/article/view/2414

24. KONONENKO, I. (1993). INDUCTIVE AND BAYESIAN LEARNING IN MEDICAL DIAGNOSIS. Applied
Artificial Intelligence, 7(4), 317–337. https://doi.org/10.1080/08839519308949993

25. A. F. M. Hani, H. A. Nugroho and H. Nugroho, "Gaussian Bayes classifier for medical diagnosis and grading:
Application to diabetic retinopathy," 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences

https://ieeexplore.ieee.org/abstract/document/1647654
https://doi.org/10.1007/978-1-4614-4133-5_3
https://www.sciencedirect.com/science/article/pii/S0169260722001171
https://www.benthamdirect.com/content/journals/cmir/10.2174/1573405617666210127154257
https://www.sciencedirect.com/science/article/abs/pii/S0925231219304709
https://ieeexplore.ieee.org/abstract/document/1633722
https://doi.org/10.5455/aim.2016.24.364-369
https://www.sciencedirect.com/science/article/abs/pii/S0933365711001461
https://www.sciencedirect.com/science/article/abs/pii/S0167814007005221
https://www.sciencedirect.com/science/article/abs/pii/S1568494607000452
https://www.univagora.ro/jour/index.php/ijccc/article/view/2414
https://doi.org/10.1080/08839519308949993

P a g e | 22

(IECBES), Kuala Lumpur, Malaysia, 2010, pp. 52-56, doi: 10.1109/IECBES.2010.5742198.
https://ieeexplore.ieee.org/abstract/document/5742198

https://ieeexplore.ieee.org/abstract/document/5742198

