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I. ABSTRACT 
 

The goal of this research is to provide an analysis on the current algorithms used for detection and diagnosis of 
disease or illness. This research includes discussing the 4 primary approaches to the development of these type 
algorithms: Supervised Learning, Unsupervised Learning, Statistical Modeling, and custom-made algorithms that 
utilize some combination of both. The discussion will include each algorithms benefits, and how they fit into the larger 
scheme of overall patient diagnosis. This research also covers the primary data sources for collecting anonymous 
patient data for developing and training machine learning classification algorithms, the use and considerations of this 
data, and results of each approach.  

 
 

II.   DATA COLLECTION 
 
Collecting high quality data to train models on is the first step to any approach. There are several 

sources that one can use to collect data ethically. Here are 3 common sources: 
 

MEDICAL IMAGING ARCHIVES (PACS): These archives contain  anonymous medical images such as x-
rays, scans, MRIS, and other digital medical images. This source would be useful for training a model in 
machine vision to detect anomalies or cancers in a radiology environment.  
EXAMPLES: 
https://www.cancerimagingarchive.net/ 
https://grand-challenge.org/ 
https://www.cancerimagingarchive.net/browse-collections/ 

 
 

ELECTRONIC HEALTH RECORDS (EHRs):  Electronic health records databases incluse both structured and 
unstructured data and can vary by source. Some form of normalization is probably required. 
EXAMPLES:  
https://starr.stanford.edu/data-types/electronic-health-record 
https://www.nature.com/articles/s41597-022-01899-x 
 
 
LAB RESULTS DATABSES:  This type of data consists of lab results from blood tests, stool tests, urine tests, 
etc. From my experience these are the hardest to get reliable data from as labs are often private organizations.  
https://pmc.ncbi.nlm.nih.gov/articles/PMC2929542/ 
 
 
SKLEARN: The algorithms in this paper will utilize SKLearn’s openly available datasets for training models. 
This is simply the easiest and most compatible data for the small scale examples in this paper.  
https://scikit-learn.org/stable/datasets.html#datasets 

 
Feature reduction Algorithm: 
 
 This algorithm utilizes a divide and conquer approach to reduce the number of features while maintain 
accuracy. This allows for the model to run more efferently as it no longer has to process a high dimensionality of 
data. The time complexity of the feature reduction can be considered m (log reg model epochs) * n (size of data) * 
log(n) (reduction) or O(m*n*log(n)) 
 
 
NOTE: While this was implemented for demonstration purposes, all results show model outputs when 
trained on the full feature set to ensure consistency and accuracy in the results and comparisons. This section 
is just to provide an alternative more streamlined dataset with reduced features.  
 

https://www.cancerimagingarchive.net/
https://grand-challenge.org/
https://www.cancerimagingarchive.net/browse-collections/
https://starr.stanford.edu/data-types/electronic-health-record
https://www.nature.com/articles/s41597-022-01899-x
https://pmc.ncbi.nlm.nih.gov/articles/PMC2929542/
https://scikit-learn.org/stable/datasets.html#datasets


P a g e  | 3 
 

def divide_and_conquer_feature_selection(X_train, y_train, X_test, y_test, features, 
target_num_features): 
    if len(features) <= target_num_features: 
        return features 
 
    # Divide the features into two 
    mid = len(features) // 2 
    left = features[:mid] 
    right = features[mid:] 
 
    # Evaluate 
    aleft = helper(X_train, y_train, X_test, y_test, left) 
    aright = helper(X_train, y_train, X_test, y_test, right) 
 
    # Keep the better half 
    selected = left if aleft > aright else right 
 
    # Recurse 
    return divide_and_conquer_feature_selection(X_train, y_train, X_test, y_test, 
selected, target_num_features) 
 
def helper(X_train, y_train, X_test, y_test, feature_subset): 
    model = LogisticRegression(max_iter=10000, solver='liblinear') 
    model.fit(X_train[feature_subset], y_train) 
    y_pred = model.predict(X_test[feature_subset]) 
    return accuracy_score(y_test, y_pred) 
 

END OF ALGORITHM  
 

III. APPROACH 
 
There are 4 general approaches that will be covered in this paper. These include Supervised Learning, 

Unsupervised Learning, Deep Learning, Statistical Modeling, and Custom Algorithms. 
 
1. SUPERVISED LEARNING:  
Supervised learning algorithms utilize datasets with the correct output each data point labeled. By 

utilizing labeled data, the model can be trained Via backpropagation and can be used on new unseen 
patient data. Some applications of this type of model include image analysis, radiology, analyzing lab 
results, and suggesting treatments to certain ailments. Some examples of supervised learning include 
logistical regression state vector machines and neural networks. By setting the output classes of a neural 
network to all the possible diseases being tested for, a sufficiently deep neural network utilizing logistical 
regression may be able to predict diagnosis once trained. 

2. UNSUPERVISED LEARNING:  
Unsupervised learning is similar to supervised learning with the difference being that data points are 

not labeled. In this way the model must group data and generate classes based on similarity this type of 
model can be used to detect anomalies and also classify results with predefined groups. An example of 
this type of algorithm is a K-Means algorithm. With sufficient generated groups, the model could predict 
the output of a given datapoint by finding its closest group. It could also detect new groups based on 
previously unseen trends period 



P a g e  | 4 
 

 
3. STATISTICAL MODELING: 
Statistical modeling is a more classical approach to medical diagnosis. These types of models take 

into account the patients age, symptoms, and medical history to  make predictions of what the diagnosis 
may be via probability. By asking the patient a series of questions, and having storing the conditional 
probability of each, the model can predict with some accuracy the general diagnosis of a patients illness. 

 
4. CUSTOM ALGORITHMS: 
In most cases, when trying to create a system that can reliably predict the diagnosis, a combination of 

the previous 3 approaches is used. By integrating the three approaches, we can reliably predict the 
diagnosis of a patient to aid in medical treatment. The tradeoff of this approach is it is the most 
computationally / time demanding as it would require the use of 3 or more models. These algorithms will 
not be covered in this paper as they encompass a wide range of solutions. 
 

 
 

IV. SUPERVISED LEARNING ALGORITHM 
 

This section contains an example of a basic supervised learning algorithm that could be used to predict 
if a sample is malignant. The dataset used contains 569 samples classed as either Malignant or Benign, 
with 212 samples the former and 357 the latter. This algorithm trains a neural network classifier on the 
data logs the accuracy of the algorithm.  
 
Complexity:  
   Determining the complexity of a supervised learning algorithm is not very straight forward depending 
on the type of algorithm. For this implementation, we can consider training and testing as 2 separate 
events and thus their complexities are distinct.  
 
Training: Training the algorithm consists of passing the dataset through the network and back-progating 
to update weights. (2n). We do this on all features (k) and repeat this as many times as we need to reach 
our target epochs (m). Thus, the time complexity of training this supervised algorithm is O(m(n*k)) 
where n = len(dataset), k = len(features), and m = len(epochs). 
 
Prediction: Predicting if a sample is malignant or not does not require any use of the dataset n. The 
algorithm utilizes the learned weights to pass the data once through the network and arrive at a result.  

Thus the time complexity of prediction is linear, at O(1). 
Dataset:  
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html 
Guides used: 
https://www.youtube.com/watch?v=z1oDlzngvI0  
https://www.youtube.com/watch?v=EAGeDyygilM  
 
class BinaryClassifier(nn.Module): 
    def __init__(self, input_size): 
        super(BinaryClassifier, self).__init__() 
        self.fc1 = nn.Linear(input_size, 64)  # layer 1 
        self.relu1 = nn.ReLU() 
        self.fc2 = nn.Linear(64, 32)       # layer 2 
        self.relu2 = nn.ReLU() 
        self.fc3 = nn.Linear(32, 1)       #  layer 3 (output layer) 

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
https://www.youtube.com/watch?v=z1oDlzngvI0
https://www.youtube.com/watch?v=EAGeDyygilM
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        self.sigmoid = nn.Sigmoid()       # map to value between 0 and 1 
 
    def forward(self, x): 
        # forward propigate through network 
        out = self.fc1(x) 
        out = self.relu1(out) 
        out = self.fc2(out) 
        out = self.relu2(out) 
        out = self.fc3(out) 
        out = self.sigmoid(out) 
        return out 
 
class Supervised: 
    def __init__(self): 
        self.classifier = BinaryClassifier(30) 
        self.load_data() 
        self.train_model() 
    def load_data(self): 
        # Load the dataset 
        cancer = load_breast_cancer() 
        X = pd.DataFrame(cancer.data, columns=cancer.feature_names) 
        y = cancer.target 
        # grab features 
 
        self.features = list(X.columns) 
        # Split the data into train, test, adn validation sets 
        # lines 19 and 20 borrowed from sklearn website 
        xtrain, xtest, ytrain, y_test = train_test_split(X, y, test_size=0.2, 
random_state=42) 
        xtrain, xvalidation, ytrain, yvalidation = train_test_split(xtrain, ytrain, 
test_size=0.25, random_state=42) # 0.25 of 0.8 is 0.2 
        # normalize the data 
        # https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler 
        self.scaler = StandardScaler() 
        xtrain = self.scaler.fit_transform(xtrain) 
        xvalidation = self.scaler.transform(xvalidation) 
        xtest = self.scaler.transform(xtest) 
        # Convert data to tensors 
        self.xtrain = torch.tensor(xtrain, dtype=torch.float32) 
        self.xvalidation = torch.tensor(xvalidation, dtype=torch.float32) 
        self.xtest = torch.tensor(xtest, dtype=torch.float32) 
        self.ytrain = torch.tensor(ytrain, dtype=torch.long) 
        self.yvalidation = torch.tensor(yvalidation, dtype=torch.long) 
        self.y_test = torch.tensor(y_test, dtype=torch.long) 
 
        return self.xtrain, self.xvalidation, self.xtest, self.ytrain, 
self.yvalidation, y_test, self.scaler, self.features 
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    # divde and conquer reduce: 
 
    def divide_and_conquer_feature_selection(self,xtrain, ytrain, xtest, ytest, 
features, num_features): 
        if len(features) <= num_features: 
            return features 
 
        # Divide the features into two 
        mid = len(features) // 2 
        left = features[:mid] 
        right = features[mid:] 
 
        # Evaluate 
        aleft = self.helper(xtrain, ytrain, xtest, ytest, left) 
        aright = self.helper(xtrain, ytrain, xtest, ytest, right) 
 
        # Keep the better half 
        selected = left if aleft > aright else right 
 
        # Recurse 
        return self.divide_and_conquer_feature_selection(xtrain, ytrain, xtest, ytest, 
selected, num_features) 
 
    def helper(self,xtrain, ytrain, xtest, ytest, feature_subset): 
        model = LogisticRegression(max_iter=10000, solver='liblinear') 
        model.fit(xtrain[feature_subset], ytrain) 
        y_pred = model.predict(xtest[feature_subset]) 
        return accuracy_score(ytest, y_pred) 
 
 

    def train_model(self, epochs=100, learning_rate=0.001): 
 
        lossc = nn.BCELoss() 
        optimizer = optim.Adam(self.classifier.parameters(), lr=learning_rate) 
 
        # Train the model 
        val_accuracies = [] 
        for epoch in range(epochs): 
            # Forward propagation 
            pred = self.classifier(self.xtrain) 
            loss = lossc(pred, self.ytrain.float().view(-1, 1)) 
            # Backward propagation and optimization 
            optimizer.zero_grad() 
            loss.backward() 
            optimizer.step() 
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            # Evaluate on validation set 
            with torch.no_grad(): 
                y_pred_val = self.classifier(self.xvalidation) 
                y_pred_val_binary = (y_pred_val > 0.5).long()  # Threshold at 0.5 
                val_accuracy = accuracy_score(self.yvalidation.numpy(), 
y_pred_val_binary.numpy()) 
                val_accuracies.append(val_accuracy) 
 

        return val_accuracies 
 
    def predict(self, data): 
        pred = self.classifier(data) 
        pred = (pred>0.5).int().tolist() 
        return sum(pred,[]) 
 
    def evaluate_model(self): 
        # Evaluate the model on the test set 
        with torch.no_grad(): 
            y_pred_test = self.classifier(self.xtest) 
            y_pred_test_binary = (y_pred_test > 0.5).long()  # Threshold at 0.5 
            #test_accuracy = accuracy_score(self.y_test, y_pred_test_binary.numpy()) 
        # variables for confusion matrix 
        tp =0 
        fp= 0 
        fn=0 
        tn=0 
        for i in range(len(y_pred_test_binary)): 
            if y_pred_test_binary[i] == 1: 
                if self.y_test[i] == 1: 
                    tp+=1 
                else: 
                    fp+=1 
            else: 
                if self.y_test[i] == 1: 
                    fn+=1 
                else: 
                    tn+=1 
        #print("fn", fn ," fp ", fp , " tn " , tn , " tp ", tp) 
        return classification_report(self.y_test, y_pred_test_binary.numpy()) 
 
if __name__ == "__main__": 
    supervised = Supervised() 
    supervised.predict(supervised.xtest) 
    # Evaluate the model 
    print(supervised.evaluate_model()) 

 
END OF ALGORITHM 
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RESULTS: 
 

Metric Benign Malignant Accuracy Macro F1 Weighted F1 

Precision 0.9855  0.9333  

0.9649 0.9630 0.9651 Recall 0.9577 0.9767  

F1-Score 0.9714 0.9545 

Count 43 71 

 
Figure 1. Supervised Learning Results 

 
 

CONFUSION MATRIX:  
Note: All confusion matrices in this report were generated via 

https://www.damianoperri.it/public/confusionMatrix/ 
 

 
 

Figure 2. Supervised Learning Confusion Matrix 
  

https://www.damianoperri.it/public/confusionMatrix/
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V. UNSUPERVISED LEARNING ALGORITHM 
 
This section contains an example of a basic unsupervised learning algorithm that could be used to 

predict if a sample is malignant. This algorithm utilizes the same exact dataset as before, but the 
algorithm does not utilize the labels for training. This algorithm (K-MEANS) creates cluster centers, 
assigns data based on how close the datapoint is to a given cluster, then re-averages the cluster centers 
and re-assigns the data again. This way the clusters become more and more fitting of the data it 
represents. The clusters are then matched with their actual values.  
Complexity: 

As with Supervised, Unsupervised learning is also broken down into training and testing 
complexities.  

 
Training: For training, we are passing each datapoint (n) into our graph checking each cluster (2) 

based on the number of features (m), and we are doing this as many times as we need until our clusters 
stop changing (for sklearn this runs 10 times, but for demonstration purposeless we will call this k). Thus 
our training complexity is n * 2 * m * k, or simply O(n*m*k) 

 
       Prediction: Predicting our datapoint in this unsupervised algorithm is not linear as it was in our 
supervised algorithm. It checks each cluster (2) by the number of features in the sample (n), this for our 
prediction approach our complexity is 2n or O(n), but in cases where the number of clusters is not 
simple, we can cay O(n*m) 
 
Dataset:  
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html 
 
 
class Unsupervised: 
    def __init__(self): 
        self.load_data() 
        self.train_kmeans_model() 
        self.assigned_clusters =  self.assign_clusters_to_labels() 
    # load the data the same way as the supervised data but without labels 
    def load_data(self): 
        # Load the dataset 
        cancer = load_breast_cancer() 
        X = cancer.data 
        y = cancer.target #useful for comparing the clusters to the actual labels 
 
        # note that this alg only loads the X values, not the Y values (no labels) 
        self.xtrain, self.xtest, self.ytrain, self.ytest = train_test_split(X, y, 
test_size=0.2, random_state=42) 
 
        scaler = StandardScaler() 
        self.xtrain = scaler.fit_transform(self.xtrain) 
        self.xtest = scaler.transform(self.xtest) 
 
        return self.xtrain, self.xtest, self.ytrain, self.ytest, scaler 
 

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_breast_cancer.html
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    # train a k-means model (creates clusters and matches each datapoint to the 
cluster it is closest to) 
    def train_kmeans_model(self, n_clusters=2): 
 
        self.kmeans = KMeans(n_clusters=n_clusters, random_state=42, n_init='auto') 
        # Train the model 
        self.kmeans.fit(self.xtrain) 
        return self.kmeans 
 
    def evaluate(self): 
        # Predict the clusters for the test data 
        cluster_labels =self.kmeans.predict(self.xtest) 
        if self.assigned_clusters[0] == 1: # if the labels are flipped, flip the 
labels of each 
            for i in range(len(cluster_labels)): 
                if cluster_labels[i] == 1: 
                    cluster_labels[i] = 0 
                else : 
                    cluster_labels[i] = 1 
        # generate variables for confusion matrix (same as before) 
        tp =0 
        fp= 0 
        fn=0 
        tn=0 
        for i in range(len(cluster_labels)): 
            if cluster_labels[i] == 1: 
                if self.ytest[i] == 1: 
                    tp+=1 
                else: 
                    fp+=1 
            else: 
                if self.ytest[i] == 1: 
                    fn+=1 
                else: 
                    tn+=1 
        #print("fn", fn ," fp ", fp , " tn " , tn , " tp ", tp) 
        #print(cluster_labels, self.ytest, assigned_clusers) 
        return classification_report(self.ytest,cluster_labels) 
 
    # goes through each cluster and finds the majority value (0 or 1) then assigns 
that cluster that valeu 
    def assign_clusters_to_labels(self): 
 
        clusters = self.kmeans.predict(self.xtrain) 
        cluster_labels = {} 
        for cluster_id in range(self.kmeans.n_clusters): 
            cluster_indices = np.where(clusters == cluster_id)[0] 
            cluster_true_labels = self.ytrain[cluster_indices] 
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            # Find the most frequent label in this cluster 
            if cluster_true_labels.size > 0: 
                most_common_label = np.bincount(cluster_true_labels).argmax() 
            else: 
                most_common_label = 0 
            cluster_labels[cluster_id] = most_common_label 
        return cluster_labels 
 
    def predict(self,  data): 
        pred = self.kmeans.predict(data) 
        if self.assigned_clusters[0] == 1: # if the labels are flipped, flip the 
labels of each 
            for i in range(len(pred)): 
                if pred[i] == 1: 
                    pred[i] = 0 
                else : 
                    pred[i] = 1 
        return pred 
 
if __name__ == "__main__": 
    unsupervised = Unsupervised() 
    # Evaluate the model 
    print(unsupervised.evaluate()) 
    # Assign labels to clusters 
 
    #print(f"Cluster to label mapping: {unsupervised.assign_clusters_to_labels()}") 
 

 
 

END OF ALGORITHM 
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RESULTS: 
 
 

Metric Benign Malignant Accuracy Macro F1 Weighted F1 

Precision 0.9091  0.9730  

 
0.9298 

 
0.9230 0.9286 Recall 0.9859 0.8372 

F1-Score 0.9459 0.9000 

Count 43 71 

 
    Figure 3. Unsupervised Learning Results 

 
 
 

CONFUSION MATRIX:  
 

 
 

Figure 4.  Unsupervised Learning Confusion Matrix 
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VI. STATISTICAL MODELING 
 
Statistical Modeling is another method of utilizing models to predict a diagnosis. Bayes 

Classifiers work by utilizing prior probabilities to calculate the probability that a data sample belongs 
in any given class. It does this by multiplying the probability that the data point is in the group (by 
using the groups frequency over N) then multiplies this by the likelihood of each feature of the 
example appearing in that group. When done for every group, we get a set of probabilities, and we 
choose the highest value as our prediction.  

 
Complexity: 

As before, we will split the complexity into training complexity and predicting complexity. 
 
Training: For training, we utilize the number of datapoints (n) and for each we utilize each feature 

(m) and compute the statistics based on these. This we can claim that for our binary approach, the 
complexity to train the model would be O(n*m). This is significantly faster training than our other two 
models. 
       
       Prediction: Predicting our datapoint in this unsupervised algorithm is not linear as it was in our 
supervised algorithm. It checks each cluster (2) by the number of features in the sample (n), this for our 
prediction approach our complexity is 2n or O(n), but in cases where the number of clusters is not 
simple, we can cay O(n*m) 
 
 
class BayesClassifier: 
    def __init__(self): 
        self.bayes = GaussianNB() 
        self.load_data() 
        self.train() 
 
    def load_data(self): 
        # Load the dataset 
        cancer = load_breast_cancer() 
        X = pd.DataFrame(cancer.data, columns=cancer.feature_names) 
        y = cancer.target 
        # grab features 
 
        features = list(X.columns) 
        # Split the data into train, test, adn validation sets 
        # lines 19 and 20 borrowed from sklearn website 
        xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, 
random_state=42) 
        xtrain, xvalidation, ytrain, yvalidation = train_test_split(xtrain, ytrain, 
test_size=0.25, random_state=42) # 0.25 of 0.8 is 0.2 
        # normalize the data 
        scaler = StandardScaler() 
        xtrain = scaler.fit_transform(xtrain) 
        xvalidation = scaler.transform(xvalidation) 
        xtest = scaler.transform(xtest) 
        # Convert data to tensors 
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        self.xtrain = torch.tensor(xtrain, dtype=torch.float32) 
        self.xvalidation = torch.tensor(xvalidation, dtype=torch.float32) 
        self.xtest = torch.tensor(xtest, dtype=torch.float32) 
        self.ytrain = torch.tensor(ytrain, dtype=torch.long) 
        self.yvalidation = torch.tensor(yvalidation, dtype=torch.long) 
        self.ytest = torch.tensor(ytest, dtype=torch.long) 
        self.scaler = scaler 
        self.features = features 
        return self.xtrain, self.xvalidation, self.xtest, self.ytrain, 
self.yvalidation, self.ytest, self.scaler, self.features 
 
    def train(self): 
        # https://scikit-learn.org/stable/modules/naive_bayes.html 
        self.load_data() 
        self.bayes.fit(self.xtrain,self.ytrain) 
 
    def predict(self,data): 
        pred = self.bayes.predict(data) 
        return pred 
 
    def evaluate_model(self): 
        pred = self.predict(self.xtest) 
        output= classification_report(self.ytest.numpy(),pred) 
        # variables for confusion matrix 
        tp =0 
        fp= 0 
        fn=0 
        tn=0 
        for i in range(len(pred)): 
            if pred[i] == 1: 
                if self.ytest[i] == 1: 
                    tp+=1 
                else: 
                    fp+=1 
            else: 
                if self.ytest[i] == 1: 
                    fn+=1 
                else: 
                    tn+=1 
        #print("fn", fn ," fp ", fp , " tn " , tn , " tp ", tp) 
        return output 
if __name__ == "__main__": 
    bayes = BayesClassifier() 
    bayes.train() 
    bayes.predict(bayes.xtest) 
    print(bayes.evaluate_model()) 

 
END OF ALGORITHM  
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RESULTS: 
  
We can clearly see that of the three models, Statistical performed similar in some aspects and actually performed 
better in others on this dataset. This is impressive considering the training time for bayes is significantly smaller than 
that of our other algorithms.  

 
 

Metric Benign Malignant Accuracy Macro F1 Weighted F1 

Precision 0.9583  0.9756  

0.9646 0.9621 0.9644 Recall 0.9857 0.9302  

F1-Score 0. 0.9718 0.9524 

Count 43 71 

 
    Figure 5. Bayes Classifier Results 
 

  
CONFUSION MATRIX:  

 

 
 

Figure 6.  Bayes Classifier Confusion Matrix 
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VII. CUSTOM ALGORITHMS 
 
Custom algorithms can be utilized to cross reference the results of each model. For example, a custom algorithm 
could run several models and use a voting system to ensure the highest likelihood of having an accurate result. In 
this approach, we could utilize the previously trained Supervised and Unsupervised algorithms and put all three 
predictions as votes. If there is a disagreement (2 positives and 1 negative, 2 negatives and 1 positive, etc), the 
higher frequency result would be the overall output. 
 
 
from BayesClassifier import BayesClassifier 
from SupervisedDiagnosis import Supervised 
from UnSupervisedDiagnosis import Unsupervised 
from sklearn.metrics import accuracy_score, classification_report 
import numpy as np 
 
if __name__ == "__main__": 
    # init all 3 models 
    bayes = BayesClassifier() 
    supervised = Supervised() 
    unsupervised = Unsupervised() 
    print("--------------BAYES--------------") 
    print(bayes.evaluate_model()) 
    print("--------------SUPERVISED--------------") 
    print(supervised.evaluate_model()) 
    print("--------------UNSUPERVISED--------------") 
    print(unsupervised.evaluate()) 
    bayes_output = bayes.predict(bayes.xtest) 
    supervised_output = supervised.predict(bayes.xtest) 
    unsupervised_output = unsupervised.predict(bayes.xtest) 
    voted_output = [] 
    # variables for confusion matrix 
    tp =0 
    fp= 0 
    fn=0 
    tn=0 
    for i in range(len(bayes_output)): 
        true_count = 0 
        if bayes_output[i] == 1: 
            true_count += 1 
        if supervised_output[i] == 1: 
            true_count += 1 
        if unsupervised_output[i] == 1: 
            true_count += 1 
 
        if true_count >= 2: 
            voted_output.append(1) 
        else: 
            voted_output.append(0) 
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        if voted_output[i] == 1: 
            if bayes.ytest[i] == 1: 
                tp+=1 
            else: 
                fp+=1 
        else: 
            if bayes.ytest[i] == 1: 
                fn+=1 
            else: 
                tn+=1 
 
    print("fn", fn ," fp ", fp , " tn " , tn , " tp ", tp) 
    print(classification_report(bayes.ytest.tolist(),voted_output)) 
 

END OF ALGORITHM 
  



P a g e  | 18 
 

RESULTS: 
We can clearly see from our results that our custom algorithm which utilizes a voting system has the 

highest average accuracy, Macro F1 and Weighted F1 scores. It is important to note that this result only 
slightly beats our Bayes Classifier, despite being the highest cost algorithm to run. 

 

Metric Benign Malignant Accuracy Macro F1 Weighted F1 

Precision 0.9589  0.9756  

 
0.9649 0.9623 0.9647 Recall 0.9859  0.9302  

F1-Score 0.9722 0.9524 

Count 43 71 

 
    Figure 5. Custom Algorithm Results 

 
 

CONFUSION MATRIX:  
 

 
     
Figure 5. Custom Algorithm Confusion Matrix 
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VIII. CONCLUSION 

 
When surveying the algorithms for patient diagnosis, we can conclude that Supervised Learning, Unsupervised 

Learning, and Statistical Modeling algorithms can accurately and consistently detect and diagnose diseases in 
patients. The implications of these algorithms can be seen in online AI based wellness applications, as well as in the 
medical field. This technology has already begun testing in radiology and cancer detection applications in the 
modern medical field. While some algorithms are more accurate than others, there is an increased benefit when 
using multiple algorithms in collaboration to increase overall accuracy. This technology will likely change the 
medical landscape and allow for faster, cheaper, and more accurate diagnosis, ultimately making healthcare more 
accessible and affordable. 

While we saw that our combination algorithm performed the best in terms of average accuracy, we must take 
into consideration the cost to accuracy ratio to determine a winner. As expected, picking the ‘best’ algorithm 
requires factoring in a project’s specific priorities. Based on this, below are the winners based on the three different 
criteria. 
 
Training Cost: 

The algorithm that wins in terms of training cost is the Bayes Classifier, due to it having the lowest training 
cost of the 3 models. This is because Bayes Classifier does not need to back-propagate like Supervised does, and 
does not need to repeatedly recalculate clusters like Unsupervised does. Thus, when picking a result that would be 
the most cost effective in training, Bayes Classifier wins. 

  
Prediction Cost: 
       In situations where prediction cost is most important, then the Supervised Learning algorithm wins. This is 
because it not only performed well in accuracy, but has the lowest overall prediction cost (by far) with a linear 
prediction cost O(1). This means that in applications where training is one and done, or a pretrained model is used, 
Supervised Learning is the best option. 
 
Accuracy: 
      When accuracy is the foremost concern, and cost is must less important, the Custom Algorithm wins as it gives 
the highest accuracy with this dataset. Which all the models were fairly accurate, the Custom Algorithm can truly 
shine when the dataset results in less accurate models overall. This would increase the need for a “highest voted 
solution”.   
 

While there is no such thing as a one size fits all approach, adequate research and testing should lead the project 
to the best approach for its goal and dataset. 
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